(7.) In Triangle $ABC$, the measure of angle $B$ is $4$ times the size of angle $A$.
The measure of angle $C$ is $12^o$ less than $5$ times the measure of angle $A$.
Calculate the measure of each angle.
Express angles $B$ and $C$ in terms of angle $A$
Let the measure of angle $A$ = $\angle A$ = A
Let the measure of angle $B$ = $\angle B$ = B
Let the measure of angle $C$ = $\angle C$ = C
The sum of the $3$ angles of a triangle = $180^o$...
Triangle Theorem
$A + B + C = 180$ ...from Geometry (sum of angles of a triangle) ...eqn.(1)
$B = 4 * A$ ...the first sentence ...eqn.(2)
$C = 5 * A - 12$ ...the second sentence ...eqn.(3)
Let us express all of them in terms of $A$
Substitute eqns.(2) and (3) into eqn.(1)
$
A + B + C = 180...eqn.(1) \\[3ex]
A + (4 * A) + (5 * A - 12) = 180 \\[3ex]
A + 4A + 5A - 12 = 180 \\[3ex]
10A = 180 + 12 \\[3ex]
10A = 192 \\[3ex]
A = \dfrac{192}{10} \\[5ex]
A = 19.2\:\:units \\[3ex]
$
Let us express all of them in terms of $B$
$
From\:\:eqn.(2) \\[3ex]
B = 4 * A \\[3ex]
4 * A = B \\[3ex]
A = \dfrac{B}{4} ...eqn.(4) \\[5ex]
From\:\:eqn.(3) \\[3ex]
C = 5 * \dfrac{B}{4} - 12 \\[5ex]
C = \dfrac{5B}{4} - 12 ...eqn(5) \\[5ex]
Substitute\:\:eqn.(4)\:\:and\:\:eqn.(5)\:\:into\:\:eqn.(1) \\[3ex]
A + B + C = 180...eqn.(1) \\[3ex]
\left(\dfrac{B}{4}\right) + B + \left(\dfrac{5B}{4} - 12\right) = 180 \\[5ex]
LCD = 4 \\[3ex]
Multiply\:\:each term\:\:by\:\:the\:\:LCD \\[3ex]
4 * \dfrac{B}{4} + 4 * B + 4 * \left(\dfrac{5B}{4} - 12\right) = 4 * 180 \\[5ex]
B + 4B + 4 * \dfrac{5B}{4} - 4 * 12 = 720 \\[5ex]
B + 4B + 5B - 48 = 720 \\[3ex]
10B = 720 + 48 \\[3ex]
10B = 768 \\[3ex]
B = \dfrac{768}{10} \\[5ex]
B = 76.8\:\:units \\[3ex]
$
Let us express all of them in terms of $C$
$
From\:\:eqn.(3) \\[3ex]
C = 5 * A - 12 \\[3ex]
5 * A - 12 = C \\[3ex]
5A = C + 12 \\[3ex]
A = \dfrac{C + 12}{5} ...eqn.(6) \\[5ex]
From\:\:eqn.(2) \\[3ex]
B = 4 * A \\[3ex]
Substitute\:\:eqn.(6)\:\:into\:\:eqn.(2) \\[3ex]
B = 4 * A ...eqn.(2) \\[3ex]
B = 4 * \left(\dfrac{C + 12}{5}\right) ...eqn.(7) \\[5ex]
Substitute\:\:eqn.(6)\:\:and\:\:eqn.(7)\:\:into\:\:eqn.(1) \\[3ex]
A + B + C = 180...eqn.(1) \\[3ex]
\dfrac{C + 12}{5} + 4 * \left(\dfrac{C + 12}{5}\right) + C = 180 \\[5ex]
LCD = 5 \\[3ex]
Multiply\:\:each term\:\:by\:\:the\:\:LCD \\[3ex]
5 * \left(\dfrac{C + 12}{5}\right) + 5 * 4 * \left(\dfrac{C + 12}{5}\right) + 5 * C = 5 * 180 \\[5ex]
(C + 12) + 4(C + 12) + 5C = 900 \\[3ex]
C + 12 + 4C + 48 + 5C = 900 \\[3ex]
10C + 60 = 900 \\[3ex]
10C = 900 - 60 \\[3ex]
10C = 840 \\[3ex]
C = \dfrac{840}{10} \\[5ex]
C = 84\:\:units \\[3ex]
$
The measure of angle $A$ is $19.2\:\:units$
The measure of angle $B$ is $76.8\:\:units$
The measure of angle $C$ is $84.0\:\:units$