As applicable, verify your answers with the
Expressions and Equations Calculators
For ACT Students
The ACT is a timed exam...$60$ questions for $60$ minutes
This implies that you have to solve each question in one minute.
Some questions will typically take less than a minute a solve.
Some questions will typically take more than a minute to solve.
The goal is to maximize your time. You use the time saved on those questions you
solved in less than a minute, to solve the questions that will take more than a minute.
So, you should try to solve each question correctly and timely.
So, it is not just solving a question correctly, but solving it correctly on time.
Please ensure you attempt all ACT questions.
There is no negative penalty for any wrong answer.
For SAT Students
Any question labeled SAT-C is a question that allows a calculator.
Any question labeled SAT-NC is a question that does not allow a calculator.
For JAMB Students
Calculators are not allowed. So, the questions are solved in a way that does not require a calculator.
For WASSCE Students
Any question labeled WASCCE is a question for the WASCCE General Mathematics
Any question labeled WASSCE:FM is a question for the WASSCE Further Mathematics/Elective Mathematics
For GCSE and Malta Students
All work is shown to satisfy (and actually exceed) the minimum for awarding method marks.
Calculators are allowed for some questions. Calculators are not allowed for some questions.
For NSC Students
For the Questions:
Any space included in a number indicates a comma used to separate digits...separating multiples of three digits from
behind.
Any comma included in a number indicates a decimal point.
For the Solutions:
Decimals are used appropriately rather than commas
Commas are used to separate digits appropriately.
Unless specified otherwise:
Solve and check each equation if asked to use any specific method.
If you used multiple methods to solve an equation, check your solution at least one time.
For each question, use the Main Check ($LHS = RHS$) for the Factoring method or
Completing the Square method.
For each question for which you checked already with the Main Check ($LHS = RHS$),
use the Alternative Check (Sum and Product of Roots) for the Quadratic Formula method.
Use at least three methods for each equation as applicable.
For each equation, calculate the discriminant only one time.
State the nature of the roots of the equation based on the discriminant.
Indicate the method used for solving each equation.
Show all Work.
Integers and fractions are only allowed for each equation.
LHS $ x^2 - 6x - 40 \\[3ex] x = -4 \\[3ex] (-4)^2 - 6(-4) - 40 \\[3ex] 16 + 24 - 40 \\[3ex] 40 - 40 \\[3ex] 0 \\[3ex] $ $ x^2 - 6x - 40 \\[3ex] x = 10 \\[3ex] (10)^2 - 6(10) - 40 \\[3ex] 100 - 60 - 40 \\[3ex] 40 - 40 \\[3ex] 0 $ |
RHS |
LHS |
RHS |
LHS |
RHS $ 17x - 20x^2 \\[3ex] x = \dfrac{5}{4} \\[5ex] 17\left(\dfrac{5}{4}\right) - 20\left(\dfrac{5}{4}\right)^2 \\[5ex] = \dfrac{85}{4} - 20\left(\dfrac{25}{16}\right) \\[5ex] = \dfrac{85}{4} - \dfrac{125}{4} \\[5ex] = \dfrac{85 - 125}{4} \\[5ex] -\dfrac{40}{4} \\[5ex] = -10 \\[3ex] $ $ 17x - 20x^2 \\[3ex] x = -\dfrac{2}{5} \\[5ex] 17\left(-\dfrac{2}{5}\right) - 20\left(-\dfrac{2}{5}\right)^2 \\[5ex] = -\dfrac{34}{5} - 20\left(\dfrac{4}{25}\right) \\[5ex] = -\dfrac{34}{5} - \dfrac{16}{5} \\[5ex] = \dfrac{-34 - 16}{4} \\[5ex] -\dfrac{40}{4} \\[5ex] = -10 $ |
LHS | RHS |
---|---|
$
2m^2 + 2m - 12 \\[3ex]
m = 2 \\[3ex]
2(2)^2 + 2(2) - 12 \\[3ex]
8 + 4 - 12 \\[3ex]
0
$
$ m = -3 \\[3ex] 2(-3)^2 + 2(-3) - 12 \\[3ex] 18 - 6 - 12 \\[3ex] 0 $ |
$0$ |
LHS | RHS |
---|---|
$
2x^2 - 3x - 5 \\[3ex]
x = \dfrac{5}{2} \\[5ex]
2\left(\dfrac{5}{2}\right)^2 - 3\left(\dfrac{5}{2}\right) - 5 \\[5ex]
2\left(\dfrac{5}{2}\right)\left(\dfrac{5}{2}\right) - \dfrac{15}{2} - 5 \\[5ex]
\dfrac{25}{2} - \dfrac{15}{2} - 5 \\[5ex]
\dfrac{10}{2} - 5 \\[5ex]
5 - 5 \\[3ex]
0
$
$ x = -1 \\[3ex] 2(-1)^2 - 3(-1) - 5 \\[3ex] 2 + 3 - 5 \\[3ex] 0 $ |
$0$ |
LHS | RHS |
---|---|
$
2x^2 + 3x - 20 \\[3ex]
x = \dfrac{5}{2} \\[5ex]
2\left(\dfrac{5}{2}\right)^2 + 3\left(\dfrac{5}{2}\right) - 20 \\[5ex]
2\left(\dfrac{5}{2}\right)\left(\dfrac{5}{2}\right) + \dfrac{15}{2} - 20 \\[5ex]
\dfrac{25}{2} + \dfrac{15}{2} - 20 \\[5ex]
\dfrac{40}{2} - 20 \\[5ex]
20 - 20 \\[3ex]
0
$
$ x = -4 \\[3ex] 2(-4)^2 + 3(-4) - 20 \\[3ex] 32 - 12 - 20 \\[3ex] 0 $ |
$0$ |
LHS | RHS |
---|---|
$
8n^2 - 4n \\[3ex]
n = \dfrac{1 + \sqrt{37}}{4} \\[5ex]
8\left(\dfrac{1 + \sqrt{37}}{4}\right)^2 - 4\left(\dfrac{1 + \sqrt{37}}{4}\right) \\[5ex]
8 * \dfrac{(1 + \sqrt{37})^2}{4^2} - (1 + \sqrt{37}) \\[5ex]
8 * \dfrac{(1 + \sqrt{37})(1 + \sqrt{37})}{16} - (1 + \sqrt{37}) \\[5ex]
\dfrac{1 + \sqrt{37} + \sqrt{37} + 37}{2} - \dfrac{2(1 + \sqrt{37})}{2} \\[5ex]
\dfrac{38 + 2\sqrt{37}}{2} - \dfrac{2(1 + \sqrt{37})}{2} \\[5ex]
\dfrac{38 + 2\sqrt{37} - 2(1 + \sqrt{37})}{2} \\[5ex]
\dfrac{38 + 2\sqrt{37} - 2 - 2\sqrt{37}}{2} \\[5ex]
\dfrac{36}{2} \\[5ex]
18
$
$ n = \dfrac{1 - \sqrt{37}}{4} \\[5ex] 8\left(\dfrac{1 - \sqrt{37}}{4}\right)^2 - 4\left(\dfrac{1 - \sqrt{37}}{4}\right) \\[5ex] 8 * \dfrac{(1 - \sqrt{37})^2}{4^2} - (1 - \sqrt{37}) \\[5ex] 8 * \dfrac{(1 - \sqrt{37})(1 - \sqrt{37})}{16} - (1 - \sqrt{37}) \\[5ex] \dfrac{1 - \sqrt{37} - \sqrt{37} + 37}{2} - \dfrac{2(1 - \sqrt{37})}{2} \\[5ex] \dfrac{38 - 2\sqrt{37}}{2} - \dfrac{2(1 - \sqrt{37})}{2} \\[5ex] \dfrac{38 - 2\sqrt{37} - 2(1 - \sqrt{37})}{2} \\[5ex] \dfrac{38 - 2\sqrt{37} - 2 + 2\sqrt{37}}{2} \\[5ex] \dfrac{36}{2} \\[5ex] 18 $ |
$18$ |
LHS | RHS |
---|---|
$
4a^2 - 8 \\[3ex]
a = \dfrac{1 + \sqrt{129}}{8} \\[5ex]
4\left(\dfrac{1 + \sqrt{129}}{8}\right)^2 - 8 \\[5ex]
4 * \left(\dfrac{1 + \sqrt{129}}{8}\right)\left(\dfrac{1 + \sqrt{129}}{8}\right) - 8 \\[5ex]
\left(\dfrac{1 + \sqrt{129}}{2}\right)\left(\dfrac{1 + \sqrt{129}}{8}\right) - 8 \\[5ex]
\dfrac{(1 + \sqrt{129})(1 + \sqrt{129})}{16} - 8 \\[5ex]
\dfrac{1 + \sqrt{129} + \sqrt{129} + 129}{16} - \dfrac{128}{16} \\[5ex]
\dfrac{130 + 2\sqrt{129}}{16} - \dfrac{128}{16} \\[5ex]
\dfrac{130 + 2\sqrt{129} - 128}{16} \\[5ex]
\dfrac{2 + 2\sqrt{129}}{16} \\[5ex]
\dfrac{2(1 + \sqrt{129)}}{16} \\[5ex]
\dfrac{1 + \sqrt{129}}{8}
$
$ a = \dfrac{1 - \sqrt{129}}{8} \\[5ex] 4\left(\dfrac{1 - \sqrt{129}}{8}\right)^2 - 8 \\[5ex] 4 * \left(\dfrac{1 - \sqrt{129}}{8}\right)\left(\dfrac{1 - \sqrt{129}}{8}\right) - 8 \\[5ex] \left(\dfrac{1 - \sqrt{129}}{2}\right)\left(\dfrac{1 - \sqrt{129}}{8}\right) - 8 \\[5ex] \dfrac{(1 - \sqrt{129})(1 - \sqrt{129})}{16} - 8 \\[5ex] \dfrac{1 - \sqrt{129} - \sqrt{129} + 129}{16} - \dfrac{128}{16} \\[5ex] \dfrac{130 - 2\sqrt{129}}{16} - \dfrac{128}{16} \\[5ex] \dfrac{130 - 2\sqrt{129} - 128}{16} \\[5ex] \dfrac{2 - 2\sqrt{129}}{16} \\[5ex] \dfrac{2(1 - \sqrt{129)}}{16} \\[5ex] \dfrac{1 - \sqrt{129}}{8} $ |
$
a \\[3ex]
\dfrac{1 + \sqrt{129}}{8}
$
$ \dfrac{1 - \sqrt{129}}{8} $ |
LHS | RHS |
---|---|
$
3a^2 - a - 12 \\[3ex]
a = \dfrac{1 + \sqrt{145}}{6} \\[5ex]
3\left(\dfrac{1 + \sqrt{145}}{6}\right)^2 - \left(\dfrac{1 + \sqrt{145}}{6}\right) - 12 \\[5ex]
3 * \dfrac{1}{6} * \dfrac{1}{6} * (1 + \sqrt{145})(1 + \sqrt{145}) - \left(\dfrac{1 + \sqrt{145}}{6}\right) - 12 \\[5ex]
\dfrac{1}{12} * (1 + \sqrt{145} + \sqrt{145} + 145) - 2\left(\dfrac{1 + \sqrt{145}}{12}\right) - \dfrac{144}{12} \\[5ex]
\dfrac{1 + 2\sqrt{145} + 145}{12} - 2\left(\dfrac{1 + \sqrt{145}}{12}\right) - \dfrac{144}{12} \\[5ex]
\dfrac{146 + 2\sqrt{145} - 2(1 + \sqrt{145}) - 144}{12} \\[5ex]
\dfrac{146 + 2\sqrt{145} - 2 - 2\sqrt{145} - 144}{12} \\[5ex]
\dfrac{0}{12} \\[5ex]
0
$
$ a = \dfrac{1 - \sqrt{145}}{6} \\[5ex] 3\left(\dfrac{1 - \sqrt{145}}{6}\right)^2 - \left(\dfrac{1 - \sqrt{145}}{6}\right) - 12 \\[5ex] 3 * \dfrac{1}{6} * \dfrac{1}{6} * (1 - \sqrt{145})(1 - \sqrt{145}) - \left(\dfrac{1 - \sqrt{145}}{6}\right) - 12 \\[5ex] \dfrac{1}{12} * (1 - \sqrt{145} - \sqrt{145} + 145) - 2\left(\dfrac{1 - \sqrt{145}}{12}\right) - \dfrac{144}{12} \\[5ex] \dfrac{1 - 2\sqrt{145} + 145}{12} - 2\left(\dfrac{1 - \sqrt{145}}{12}\right) - \dfrac{144}{12} \\[5ex] \dfrac{146 - 2\sqrt{145} - 2(1 - \sqrt{145}) - 144}{12} \\[5ex] \dfrac{146 - 2\sqrt{145} - 2 + 2\sqrt{145} - 144}{12} \\[5ex] \dfrac{0}{12} \\[5ex] 0 $ |
$0$ |
LHS $ 5x^2 + 6x \\[3ex] x = \dfrac{-3 + 6i}{5} \\[5ex] x^2 = \left(\dfrac{-3 + 6i}{5}\right)^2 \\[5ex] x^2 = \dfrac{(-3 + 6i)^2}{5^2} \\[5ex] (-3 + 6i)^2 = (-3 + 6i)(-3 + 6i) \\[3ex] (-3 + 6i)^2 = 9 - 18i - 18i + 36i^2 \\[3ex] (-3 + 6i)^2 = 9 - 36i + 36(-1) \\[3ex] (-3 + 6i)^2 = 9 - 36i - 36 \\[3ex] (-3 + 6i)^2 = -27 - 36i \\[3ex] \implies x^2 = \dfrac{-27 - 36i}{25} \\[5ex] 5x^2 = 5\left(\dfrac{-27 - 36i}{25}\right) \\[5ex] 5x^2 = \dfrac{-27 - 36i}{5} \\[5ex] 6x = 6\left(\dfrac{-3 + 6i}{5}\right) \\[5ex] 6x = \dfrac{-18 + 36i}{5} \\[5ex] \implies 5x^2 + 6x \\[3ex] = \left(\dfrac{-27 - 36i}{5}\right) + \left(\dfrac{-18 + 36i}{5}\right) \\[5ex] = \dfrac{(-27 - 36i) + (-18 + 36i)}{5} \\[5ex] = \dfrac{-27 - 36i - 18 + 36i}{5} \\[5ex] = \dfrac{-45}{5} \\[5ex] = -9 $ $ 5x^2 + 6x \\[3ex] x = \dfrac{-3 - 6i}{5} \\[5ex] x^2 = \left(\dfrac{-3 + 6i}{5}\right)^2 \\[5ex] x^2 = \dfrac{(-3 - 6i)^2}{5^2} \\[5ex] (-3 - 6i)^2 = (-3 - 6i)(-3 - 6i) \\[3ex] (-3 - 6i)^2 = 9 + 18i + 18i + 36i^2 \\[3ex] (-3 - 6i)^2 = 9 + 36i + 36(-1) \\[3ex] (-3 - 6i)^2 = 9 + 36i - 36 \\[3ex] (-3 - 6i)^2 = -27 + 36i \\[3ex] \implies x^2 = \dfrac{-27 + 36i}{25} \\[5ex] 5x^2 = 5\left(\dfrac{-27 + 36i}{25}\right) \\[5ex] 5x^2 = \dfrac{-27 + 36i}{5} \\[5ex] 6x = 6\left(\dfrac{-3 - 6i}{5}\right) \\[5ex] 6x = \dfrac{-18 - 36i}{5} \\[5ex] \implies 5x^2 + 6x \\[3ex] = \left(\dfrac{-27 + 36i}{5}\right) + \left(\dfrac{-18 - 36i}{5}\right) \\[5ex] = \dfrac{(-27 + 36i) + (-18 - 36i)}{5} \\[5ex] = \dfrac{-27 + 36i - 18 - 36i}{5} \\[5ex] = \dfrac{-45}{5} \\[5ex] = -9 $ |
RHS |
LHS | RHS |
---|---|
$
m = -2 \\[3ex]
m^2 - 5m - 14 \\[3ex]
(-2)^2 - 5(-2) - 14 \\[3ex]
4 + 10 - 14 \\[3ex]
0
$
$ m = 7 \\[3ex] m^2 - 5m - 14 \\[3ex] 7^2 - 5(7) - 14 \\[3ex] 49 - 35 - 14 \\[3ex] 0 $ |
$0$
$0$ |
LHS | RHS |
---|---|
$
x = -3 \\[3ex]
x^2 + 4x + 3 \\[3ex]
(-3)^2 + 4(-3) + 3 \\[3ex]
9 - 12 + 3 \\[3ex]
0
$
$ x = -1 \\[3ex] x^2 + 4x + 3 \\[3ex] (-1)^2 + 4(-1) + 3 \\[3ex] 1 - 4 + 3 \\[3ex] 0 $ |
$0$
$0$ |
LHS | RHS |
---|---|
$
m = -3 \\[3ex]
2m^2 + 2m - 12 \\[3ex]
2(-3)^2 + 2(-3) - 12 \\[3ex]
2(9) - 6 - 12 \\[3ex]
18 - 6 - 12 \\[3ex]
0
$
$ m = 2 \\[3ex] 2m^2 + 2m - 12 \\[3ex] 2(2)^2 + 2(2) - 12 \\[3ex] 2^3 + 4 - 12 \\[3ex] 8 + 4 - 12 \\[3ex] 0 $ |
$0$
$0$ |
LHS | RHS |
---|---|
$x^2$ | $- 12x - 20$ |
$
(-2)^2 \\[3ex]
4 \\[3ex]
$
$ (-10)^2 \\[3ex] 100 $ |
$
-12(-2) - 20 \\[3ex]
24 - 20 \\[3ex]
4 \\[3ex]
$
$ -12(-10) - 20 \\[3ex] 120 - 20 \\[3ex] 100 $ |
LHS $ 3x^2 - 5x \\[3ex] x = 2 \\[3ex] 3(2)^2 - 5(2) \\[3ex] 3(4) - 10 \\[3ex] 12 - 10 \\[3ex] 2 \\[3ex] $ $ x = -\dfrac{1}{3} \\[5ex] 3\left(-\dfrac{1}{3}\right)^2 - 5\left(-\dfrac{1}{3}\right) \\[5ex] 3\left(\dfrac{1}{9}\right) + \dfrac{5}{3} \\[5ex] \dfrac{1}{3} + \dfrac{5}{3} \\[5ex] \dfrac{1 + 5}{3} \\[5ex] \dfrac{6}{3} \\[5ex] 2 $ |
RHS $ 2 \\[3ex] $ $ 2 $ |
LHS $ Sum\;\;of\;\;roots \\[5ex] = 2 + -\dfrac{1}{3} \\[5ex] = 2 - \dfrac{1}{3} \\[5ex] = \dfrac{6}{3} - \dfrac{1}{3} \\[5ex] = \dfrac{6 - 1}{3} \\[5ex] = \dfrac{5}{3} \\[5ex] $ $ Product\;\;of\;\;roots \\[3ex] = 2 * -\dfrac{1}{3} \\[5ex] = -\dfrac{2}{3} $ |
RHS $ Sum\;\;of\;\;roots = \dfrac{-b}{a} \\[5ex] = \dfrac{-(-5)}{3} \\[5ex] = \dfrac{5}{3} \\[5ex] $ $ Product\;\;of\;\;roots = \dfrac{c}{a} \\[5ex] = -\dfrac{2}{3} $ |
LHS | RHS |
---|---|
$
x^2 - 4y^2 \\[3ex]
3^2 - 4\left(\dfrac{3}{2}\right)^2 \\[5ex]
9 - 4\left(\dfrac{9}{4}\right) \\[5ex]
9 - 9 \\[3ex]
0
$
$ x + 2y \\[3ex] 3 + 2\left(\dfrac{3}{2}\right) \\[5ex] 3 + 3 \\[3ex] 6 $ |
$0$
$6$ |